In Vitro Regeneration of Iranian Melon (Cucumis Melo L. ‘Samsoori’) Using Antibiotic and Benzyl adenine Micropropagation of Cucumis Melo L. ‘Samsoori’

Authors

  • Davood Naderi Young Researchers Club, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
  • Esmaeil Mahmoudi Department of plant protection, Faculty of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Abstract:

Cucumis melo L. is one of the most economically important horticultural crops worldwide. However,   low plant regeneration frequency of this plant during genetic transformation is  the  major hurdle for  applying biotechnological approaches. Hence, this study aimed to evaluate the effect of 6-benzyladenine (BA), cefotaxime (CTX), kanamycin (KAN), and indole-3-acetic acid (IAA) on the regeneration of cotyledonary petioles generated from 6-day-old in vitro grown seedlings. Results showed that  application of 1.5 mgl-1 BA plus 250 mgl-1 CTX and 1 mgl-1 BA with 1000 mgl-1 CTX formed the most efficient media for plant regeneration. The highest callus production was recorded on medium containing 1 mgl-1 BA with 250 mgl-1 CTX and 1.5 mgl-1 BA with 750 mgl-1 CTX. Medium containing 500 mgl-1 CTX plus 0.1 mgl-1 IAA  efficiently  induced both root and leaf formation. All regenerated plants were died by adding   100 mgl-1 kanamycin therefore this level considered as threshold level for kanamycin application.. Overall, the results indicated that presence of BA plays an essential role for melon regeneration and cefotaxime can be considered as an auxiliary agent. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The genome of melon (Cucumis melo L.).

We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the ...

full text

Mapping and Characterization of the fefe Gene That Controls Iron Uptake in Melon (Cucumis melo L.)

Iron (Fe) deficiency in plants limits crop growth and productivity. Molecular mechanisms that plants use to sense and respond to Fe deficiency by coordinated expression of Fe-uptake genes are not fully understood. The C940-fe chlorotic melon (Cucumis melo) mutant known as fefe is unable to upregulate Fe-uptake genes, however, the FeFe gene had not been identified. In this study, we used two F2 ...

full text

Frequency of RAPD Polymorphisms in Melon (Cucumis melo L.) Germplasm in Different Geographic Regions

Introduction: The genetic diversity of melon groups has been characterized using molecular analyses (5, 6, & 8). Random amplified polymorphic DNA markers have been used by García et al. (1) and Staub et al. (7) to assess the genetic diversity of elite germplasm. Likewise, Mliki et al. (3) and Nakata (4) used the same markers employed by Staub et al. (7) to define the diversity among African and...

full text

De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from ...

full text

The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

Alcohol dehydrogenases (ADH), encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH), designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lo...

full text

The Cinnamyl Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments imp...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  117- 126

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023